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Abstract 

A model-based approach is developed to estimate the distribution 
of time from seroconversion to diagnosis with acquired immuno- 
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deficiency syndrome (AIDS) as a function of selected time-depen- 
dent covariates. The approach is applied to longitudinal data col- 
lected over 4 years of follow-up from 450 men seropositive for the 
human immunodeficiency virus (90 AIDS cases) and 62 serocon- 
verters (nine AIDS cases) participating in the Chicago part of the 
Multicenter AIDS Cohort Study. Because of the periodic nature of 
monitoring, the seroconversion time is interval-censored for sero- 
converters and left-censored for seroprevalent cohort members; the 
end-point is right-censored for 413 individuals. Since serological 
monitoring is not continuous but only at regularly scheduled visit 
times, a model for the discrete hazard rate (DHR) is proposed that 
is a generalized linear model that relates the DHR to the covariate 
history through the complementary log-log link. Classification trees 
are used for preliminary screening of covariates to identify predic- 
tors of AIDS that should be incorporated into the DHR model. The 
missing seroconversion times for all men are imputed 100 times to 
obtain 100 completed datasets from which the parameters of the 
DHR are then estimated using the maximum-likelihood method. The 
final DHR model includes the following infection progression (marker) 
variables: CD4%, hemoglobin, p24 antigen, and CD4% x p24 an- 
tigen interaction. Using this DHR model, the discrete survival dis- 
tribution of AIDS-free time is estimated for the given population. 
The jackknife procedure is used to assess the precision of the es- 
timated survival distribution. 

Introduction 

The problem of estimating the distribution of time from initial infection with 
human immunodeficiency virus (HIV) to the onset of acquired immunode- 
ficiency syndrome (AIDS) (also referred to as the AIDS-free time or  incu- 
bation time) has received much attention in recent years (1-5). In the present 
paper we address this problem in a novel way by exploiting the information 
on time-dependent covariates available from longitudinal data and incorpo- 
rating it into a model for the distribution of AIDS-free time. W e  apply this 
model to data from the Chicago part of the Multicenter AIDS Cohort Study 
(MACS), a prospective longitudinal study of homosexual or  bisexual men 
recruited between April 1984 and March 1985 and followed at semiannual 
intervals (6). The homosexual male population is of interest because it forms 
a large risk group for HIV infection and AIDS (7). 

There are serious missing data problems associated with such a homo- 
sexual cohort making the estimation of the AIDS-free (survival) time distri- 
bution a formidable task. First, the exact dates of infection are unknown for 
these individuals. Because of the difficulty in determining the infection date, 
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Estimating AIDS-Free Time Distribution 131 

the seroconversion data (i.e., the date at which antibody to HIV is first de- 
tectable) is often used as the beginning point of the AIDS-free stage of the 
HIV infection, and we shall follow the same practice. But even the serocon- 
version date is unknown for someone who was seropositive (HIVS) on entry 
to the study, and it is only known to lie in a given interval for a seroconverter. 
Second, although many -AIDS cases were observed among the prevalent co- 
hort, very few cases were observed among the incident cohort. Mufioz et al. 
(1,2) provided a solution to the first problem by imputing the seroconversion 
times of the prevalent individuals based on data from selected infection pro- 
gression (marker) variables measured at enrollment by using a model that 
relates these variables to the time since seroconversion; this model was es- 
timated using the data from seroconverters whose seroconversion dates were 
known (within 2 4  months). The uncertainty introduced due to imputing (rather 
than "knowing") the seroconversion times was assessed by using the multiple 
imputation methodology (8,9). Taylor et al. (3) employed the same meth- 
odology, but imputed the AIDS onset times for seroconverters who had not 
had an event and who would otherwise be right-censored. Note that while 
Mufioz et al. (1,2) imputed events in the past, Taylor et al. (3) imputed events 
in the future. Once a "complete" dataset was obtained by imputing the miss- 
ing values, these investigators used Kaplan-Meier-type methods to estimate 
the survival distribution. 

In the present paper we build on these two methods by incorporating 
the following enhancements: 

1. We identify the most important longitudinally observed covariates 
predictive of AIDS onset and incorporate them into a model for the 
distribution of the AIDS-free time. They turn out to be certain key 
laboratory variables (selected by screening a large group of behav- 
ioral, laboratory, and other variables), which may be regarded as 
marker variables (1 0). 

2. We employ the resulting model to estimate the AIDS-free time dis- 
tribution by using the information on the longitudinal covariate trends 
after seroconversion. This is a model-based approach to the esti- 
mation of the survival time distribution, in contrast to the nonpara- 
metric Kaplan-Meier-type approaches employed by Mufioz et al. 
(1,2) gnd Taylor et al. (3), which do not utilize any covariate in- 
formation. 

3. We explicitly take into account the interval-censored nature of sam- 
pling in our modeling. The previous investigators (1-3) assumed 
continuous distributions. 

4. We use the Muiioz et al. (1,2) method for imputing the serocon- 
version dates of seroprevalent individuals, but instead of using only 
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Table 1 .  Variables Analyzed from Chicago MACS Database 

Laboratory tests Clinical data Behavioral data 

Complete blood count0 
HIV enzyme assay 
p24 antigen 
Immunoglobulin: G,  A, M 
Cytomegalovirus antibody 
Hepatitis B surface antigen 
Hepatitis B surface antibody 
Lymphocyte phenotyping 

T lymphocytes (total) 
T-suppressor lymphocytes 
T-helper lymphocytes 

Communicable diseasesb 
Sexually transmitted 

diseases' 
Anergy 
Herpes simplex 
Herpes zoster 
AIDS-related symptoms 

Constitutional symptoms 
Lymphadenopathy 
Thrush 

Rectal trauma 
Parenteral exposure 
Weight 
Age 

Recreational drug use 
Cocaine 
M D A ~  

Sexual practices 
Age at first sex with male 
Age began regular male 
sex 
Receptive anal intercourse 
Insertive anal intercourse 

Number of sexual partners 
Lifetime male partners 
Male partners last 6 mo 
Female partners last 

6 mo 

"White blood cells, red blood cells, hemoglobin, hematocrit, platelets, neutrophils, bands, lymphocytes, 
monocytes, eosinophils, basophils. 
'Ameba, Giardia, lice, other parasites, scabies, Shigella. 
'Syphilis, gonorrhea, urethritis, condylomata acuminata. 
"Methylenedioxyamphetamine. 

the marker variables at entry, we use data from all follow-up visits. 
This may yield more reliable imputed values of their seroconversion 
dates. 

The following statistical methodologies are used in the present paper: 
classification and regression trees (CART) (1 1) to do exploratory screening 
of potential predictor variables and interactions among them, discrete (inter- 
val-censored) survival models (12), generalized linear models (13), multiple 
imputations of missing data (8,9), and jackknifing (15) to estimate the sur- 
vival probabilities at prescribed time points and their standard errors. 

Background of the Study 

The ensuing analyses use data gathered from 1102 homosexual or bisexual 
men enrolled into the Chicago MACS study between April 1984 and March 
1985. Data were gathered at baseline and succeeding semiannual visits from 
an interview, physical examination, and laboratory evaluation. A summary 
of variables we analyzed is shown in Table 1.  The data are from the first 
nine semiannual visits of the Chicago MACS study. 

HIV antibody status was determined at each visit. An individual was 
considered to be HIV antibody positive based on a positive ELISA HIV an- 
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Estimating AIDS-Free Time Distribution 133 

tibody serology test confirmed by a positive Western blot. The cohort may 
be divided into three groups based on HIV antibody status over 4 years of 
follow-up: 589 men who were negative for the entire span of follow-up com- 
prise the seronegative (HIV-) cohort and are not included in the present anal- 
yses; 450 men who were seropositive for HIV at entry comprise the prevalent 
cohort; and 63 men who were HIV negative at the entry time but tested pos- 
itive during the follow-up comprise the incident or seroconverter cohort. Dur- 
ing the first 4 years of the study, 99 cases of AIDS were diagnosed, 90 from 
the prevalent cohort and nine from the incident cohort. One seroconverter 
was HIV- at all visits but was later diagnosed with AIDS and is excluded 
from analyses. This follow-up period represents the experience of the cohort 
prior to the availability of Zidovudine and other treatments; we do not concern 
ourselves with effects of antiviral treatment that later become important. 

Statistical Methods 

Development of the Model 

As noted before, the data are interval-censored because the visits are ap- 
proximately 6 months apart. To develop a simple, discrete survival model, 
a 6-month time unit is used. (The actual data show that 47% of all visits took 
place within 5.5-6.5 months of the previous visits and 84% of the visits took 
place within 4.5-7.5 months of the previous visits. The mode of the intervisit 
time distribution was 6 months for earlier visits and 4-5 months for later 
visits.) 

Let Tc denote the AIDS-free time measured on a continuous scale; Tc 
is the time between HIV serconversion and the diagnosis of AIDS. This time 
is not observable for various reasons. For prevalent cohort individuals, sero- 
conversion occurred prior to study entry and is left censored. For both prev- 
alent and incident cohort individuals, AIDS may not occur during the follow- 
up period; i.e., this event is right-censored. Even if both events occur during 
the study for an individual, they are interval-censored due to periodic mon- 
itoring. To account for these different types of censoring, we define a discrete 
approximation to Tc, denoted by TD, which is the number of discrete time 
periods from HIV seroconversion to AIDS. In this example, a period is 6 
months, thus TD = 2 means 12 months. Discrete time is marked backward 
from the first HIV+ study visit to determine the period in which serocon- 
version occurred; this period defines the discrete time origin, as shown in 
Figure 1. Let V be the discrete time from seroconversion to the first HIV+ 
study visit. Note that V = 0 for the incident cohort and V > 0 for most 
prevalent cohort members. In fact, V is not known for prevalent cohort mem- 
bers and is estimated building on methods of Muiioz et al. (1,2) and Taylor 
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Figure I .  HIV incubation measured in discrete time. 

et al. (3). Let A be the number of follow-up time periods from the first HIV+ 
visit to the last HIV+ visit and B be the number of time periods from the 
first HIVf visit until the end of the time period in which AIDS onset occurs 
(i.e., the visit AIDS is reported); thus TD = V + B. Note that for individuals 
who remain AIDS-free during follow-up, B > A; otherwise B = A .  

Define the discrete hazard rate (DHR) associated with TD by 

The discrete survival function can be expressed as 

In this paper we model Ok as a function of an individual's covariate history 
up to the beginning of the kth time period and then use this model to estimate 
SD(k) via (2). The covariate history for the ith individual is summarized in 
xik = {xi jk( l  5 j 5 J)), k = Vi, . . ., Vi + Ai, i = 1, . . ., N, where N is the 
number of people, J is the number of covariates, Vi indexes the discrete time 
of the first postseroconversion visit, and Ai is the discrete follow-up time from 
the first postseroconversion visit until the individual either drops out of the 
study or is diagnosed with AIDS, whichever comes first. Three models for 
Ok, complementary log-log (CLL), log logistic, and complementary log, were 
evaluated. These three models can be derived from a continuous hazard model, 
which assumes an underlying multiplicative or additive hazard rate. Breslow 
and Day (16) provide a method to compare models based on a log likelihood 
ratio criterion. Using this method, the CLL model was selected, which is 
associated with a multiplicative hazard rate. Details are given in Dunlop (17). 
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Estimating AIDS-Free Time Distribution 135 

Let Oik denote the value of Ok for the ith individual. We fitted the following 
generalized linear model with a complementary log-log (CLL) link to Oik 

In (3), 1 indexes the number of lag periods, X;jk-/-1 is the value of the jth 
covariate for the ith individual at the beginning of the ( k  - 1)th period, Pjkr 
is the "effect" of the corresponding covariate value, and POk is the intercept 
term (1 5 i 5 N ,  1 5 j 5 J ,  1 % k 5 K, 1 % I 5 L,); here K is some 
maximum number of periods for which the model is to be estimated (K 5 

maxlcisN(Vi + AJ). 
The p's in model (3) are unknown parameters to be estimated. The choice 

of the covariates xj's and their lags Lj's is based on a preliminary exploration 
of the data, and data on the Oik's are available through indicator variables 
Yik's, where Yik = 0 or Yik = 1 depending on whether the ith individual is 
AIDS-free or is diagnosed with AIDS during the kth period. Thus 

Estimation of the Model for "Complete" Data 

We now discuss how model (3) can be fitted if we have "complete" data of 
the following form: 

where yik is the observed value of Yik and the Vi are assumed to be known 
for all people. Note that when k = Vi + Ai then yik = 0 if the ith individual 
is right-censored and yik = 1 otherwise. Assuming independence between 
individuals, the likelihood function can be written as 

Note that (4) is a product of CA, independent Bernoulli probabilities. If there 
are any missing visits between two AIDS-free visits, the corresponding terms 
are omitted from this product; the likelihood is not affected in any other way 
(unless the model includes lagged covariate effects, in which case additional 
terms may be omitted because of lacking data). It is assumed that such visits 
are missing at random. 

Prentice and Gloeckler (20) have derived the likelihood equations for 
the generalized linear model with a CLI, link (3) whose solution yields 
the maximum likelihood estimate (MLE) P of the parameter vector P;  they 

*+' 
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136 Dunlop et al. 

also have given a formula for the asymptotic variance-covariance matrix of 
p. The iterative weighted least squares is an algorithmic method for obtaining 
b. This is the method implemented in the GLIM (21) package that was used 
in the present work. 

To have parsimony in the number of parameters, models were restricted 
to Pjkl = Pj[;  i.e., the "effects" were assumed to be time-invariant. Also, 
instead of having a separate Po, term for each k = 1, 2 ,  . . . , K, we approx- 
imated p,, as a cubic in k, 

Multiple Imputations of Seroconversion Dates 

To fit the model (3) by maximizing the likelihood function (4), we need to 
know the seroconversion dates for all individuals, but these dates are un- 
known. Therefore, we impute them using the following modification of a 
method due to Mufioz et al .  (1,2). The strategy is to draw an elapsed sero- 
conversion time for each postseroconversion visit a = 0, . . . . A, from a dis- 
tribution estimated using the individual's laboratory data. The imputed sero- 
conversion time is the median of the corresponding (A, + 1) seroconversion 
dates. This imputed time is used to estimate V, the discrete time from sero- 
conversion to the first HIV+ visit. Multiple seroconversion times are imputed 
for each person to account for the uncertainty introduced by estimating rather 
than knowing this date. 

Let U denote the time since seroconversion at any given follow-up visit 
and let F(u ( z, y) = Pr{U 5 u / z, y}  denote the distribution function of U 
given the covariate vector z (which will in general be different from x used 
to model the distribution of T D )  at that visit; here F( . )  is assumed to have a 
known functional form and y is an unknown parameter vector. Note that U 
is the continuous time from seroconversion to a given follow-up visit, whereas 
TD is the number of periods from seroconversion to AIDS onset. We estimate 
y from the data on the incident cohort (denoted by I) that have known se- 
roconversion intervals. Let z,, be the vector of covariates and U,, the time 
since seroconversion, both measured at the ath visit, and let w, be the number 
of periods between the last HIV- visit and the first HIV+ visit for the ith 
individual, i E I; for all except two incident cohort members we have w, = 
1; i.e.,  there are no missing visits straddling the change of serostatus. Con- 
ditioning on the fact that the ith individual is followed for A, periods and 
hence U,, 5 A, + w,, the MLE 9 of y can be found by maximizing the 
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Estimating AIDS-Free Time Distribution 

likelihood function 

which is obtained by treating the Ui, as independent r.v.'s. Liang and Zeger 
(22) have shown that this results in consistent estimates. 

Once the MLE $j and its estimated covariance matrix, c;v(?), are ob- 
tained by using the standard maximum likelihood (ML) methods (23), the 
imputation of the seroconversion dates for individuals in the incident or prev- 
alent cohort (denoted by I and P, respectively) proceeds according to the 
following algorithm. 

Imputation Algorithm 

1. To reflect the uncertainty due to estimating y  rather than "knowing" 
it, draw a random sample -jl,, -j12, . . . , $jM from the posterior distri- 
bution of y ,  which, for a large number of incident cohort obser- 
vations, may be well approxim2teci by a multivariate normal (MVN) 
distribution, y - MVN ($j, Cov(?)). 

2. For the ith individual (i E I, P) and sampled vector $jm(l r m 5 
M), draw u,, from the distribution F(.  I z,, ?,,J for each nonmissing 
visit a = 0, 1, . . . , Ai for the ith individual, taking into account 
known bounds on u,,. The elapsed seroconversion time at visit a 
is bounded, a < U,, 5 U* + a .  We used U* = wi for incident 
cohort members and U* = 20 periods for prevalent cohort mem- 
bers; the latter value of U* corresponds to January 1, 1975, which 
is a conservative estimate of the first HIV infection in the United 
States. (Values of U* as high as 30 were used, but did not affect 
the results appreciably. ) 
Thus draw u,, from the conditional distribution function of U ,  given 
by 

{F(u I zia, -jlJ - F(a  I Zia, ?,>I 

3. Estimate the elapsed seropositive time prior to the first HIV+ visit 
for the ith individual by the median of {(uiam - a), a = 0, 1, . . . , 
A,). Denote the integer part of this median by pi,, which is an es- 
timate of Vi. Then we can assign discrete times Qim, Qim + 1, . . . , 
Pi,,, + Ai to this individual's Ai + 1 visits. Note that the first 
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pi, - 1 "observations" are regarded as missing for this individual. 
However, this only causes the corresponding contributions to the 
likelihood function (4) to be omitted, as noted before. 

4. Repeat steps 2 and 3 for all i E I, P and combine imputed times 
with the observed data, thus obtaining one "complete" data set. 

5 .  Repeat step 4 for all qm(m = 1, 2, . . . , M) thus obtaining M "com- 
plete" data sets. 

Let 4 be a vector of parameters to be estimated. For example, 51rAmay be the 
vector of survival probabilities {SD(k), k = 1, 2, . . . , K}. Let $,,be an es- 
timate of $ obtained from the mth "complete" data set, and let Cov($,) be 
the corresponding estimated "within" covariance matrix. An overall estimate 
of I+!I may be taken to be t,b = (1 /M) X:=, $m. Rubin and Schenker (9) propose 
the following as an estimate of the total covariance matrix of $ (which ac- 
counts for both the "within" and "between" variability of the i,bm9s): 

A 1 A M + 1  M 

COV($) = - 2 Cov ($,) + 
M ,=, 

We used the grouped jackknife method to calculate the estimate $m (where 
4 is the vector of survival probabilities A S,(k), k = 1, . . . , K) and its estimated 
"within" covariance matrix Cov(+,), m = 1, . . . , M. The method of cal- 
culation of the jackknife estimate of the survival probability vector for the 
population is described in the next section. 

Results 

Imputation of Seroconversion Dates 

The estimation of model (3) required imputing of the seroconversion dates 
for incident and prevalent cohort members. The covariates and the functional 
form of the distribution of elapsed time from seroconversion, F(u I z,~, y) ,  to 
be used in the imputation procedure were selected using the incident cohort 
data. CART regression trees were used to do preliminary exploratory screen- 
ing of the data set of 313 observations on 65 variables contributed by 62 
seroconverters to identify covariates related to the elapsed time from the first 
HIVf visit. A parametric regression model was then fitted with the suggested 
CART candidates using the ML methods for interval-censored data (23). Ba- 
sophils and CD4% had statistically significant nonzero coefficients and were 
incorporated into F( . ) .  Four parametric forms for the distribution F( . )  were 
evaluated using the likelihood function (6), the gamma, the log logistic, the 
log normal, and the Weibull. The log logistic distribution was selected based 
on its simplicity and its goodness of fit. The goodness of fit was assessed by 
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Estimating AIDS-Free Time Distribution 139 

the linearity of a plot of the generalized residuals versus the expected unit 
exponential order statistics (24). The plot from the logistic model was the 
most linear based on the correlation coefficient r = .90 and visual exami- 
nation. The log logistic distribution is given by 

where A = exp [ - { y ,  + Y,(CD~%,~) + y, (basophilik))]. 
The estimates of the log logistic model parameters and their covariance 

matrix were as follows: 

and 

Values of y were randomly drawn from the MVN(Y, C;V(~)) distribution 
and used in (8) to impute 100 seroconversion dates for each individual from 
the incident and prevalent cohorts (as described in the imputation algorithm 
given in the preceding section) resulting in 100 complete datasets. Four years 
of information was available from the seroconverter cohort to estimate y;  the 
imputed dates for prevalent cohort members were sampled as far back as 10 
years prior to enrollment. This extrapolation seems unavoidable given that 
the data are available only from the early part of the epidemic; however, data 
from the latter part of the epidemic can be used to check the reasonableness 
of this imputation as they become available over time. 

Estimated DHR Model 

The covariate terms to be incorporated into the DHR model with a CLL link 
function were identified by a two-stage screening procedure. In the first stage, 
classification trees were used to simultaneously screen a dataset of 2927 ob- 
servations on 73 risk factor and marker variables (including 6- and 12-month 
lagged values of CD4, CD4%, CD8, and CD8%) contributed by 450 prev- 
alent and 62 seroconverter cohort members to identify those variables and 
two-factor interactions most strongly related to AIDS onset. Classification 
trees using equal and unequal priors were grown from a learning set of 2178 
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2112 t 
66 

CD4% 5 23.2% CD4% > 23.2% 

1457 

hemoglobin 5 15AA2 AIDS-free l o  t 

t Number AIDS-free 

AIDS AIDS-free Number with AIDS 

Figure 2.  CART classification tree using equal priors (learning set tree: n, = .5 and Q = .5 ) .  

observations and pruned using a test set of the remaining 749 observations. 
The classification tree grown with equal priors, which tends to equalize the 
misclassification rates (1 1) for AIDS and AIDS-free cases, focused on vari- 
ables that would identify AIDS cases. This tree, shown in Figure 2, indicates 
that AIDS cases are associated with low levels of CD4% and low hemoglo- 
bin. Among the AIDS learning set observations, 80% (53166) had CD4% 5 

23.2% and hemoglobin 5 15.2 mg/dl. The classification tree grown with 
unequal priors (reflecting the proportion of AIDS and AIDS-free seropositive 
individuals over the follow-up time) focused on variables that would identify 
AIDS-free cases. This tree, shown in Figure 3, indicates that AIDS-free cases 
are generally associated with a negative p24 antigen test; however, if p24 
antigen is present, then the CD4% values become informative for identifying 

1869 f 

26 $ 

AIDS-free 

t Number AIDS-free 
1 Number with AIDS AIDS AIDS-free 

Figure 3 .  CART classification tree using unequal priors (learning set tree: n, = .8 and 
n2 = . 2 ) .  
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Estimating AIDS-Free Time Distribution 141 

AIDS-free cases. Among the AIDS-free learning set observations, 88% (1869/ 
2 1 12) had negative p24 antigen results. An additional 10% of the AIDS-free 
observations (220/2112) with positive p24 antigen results had CD4% > 10.9%. 
In the second stage, these covariate terms together with some additional terms 
(strong surrogate or competitive variables suggested by the CART analysis) 
were further screened by fitting the DHR model to a dataset where the es- 
timated seroconversion date for each individual was the mean of 100 imputed 
dates. All candidate covariates were entered into the model; the final set of 
covariates were those associated with a statistically significant change in de- 
viance (13), namely, CD4%, hemoglobin, p24 antigen, and a CD4% x p24 
antigen interaction. 

CART was the primary tool used to screen and select covariates. The 
secondary screening, which used imputed data, only confirmed the covariates 
selected by CART. Thus multiple imputation did not have any effect on the 
final selection of covariates. 

The MLEs of the parameter vector from the DHR model with a cubic 
approximation (5) of the Po, term and time-invariant covariate coefficients 
were obtained from each of the 100 complete datasets and combined into an 
overall estimated parameter vector and its estimated covariance matrix, as 
described in the preceding section. The signs of the estimated a , ,  a,, and a, 
coefficients in that approximation were found to flip back and forth across 
the 100 datasets, which resulted in highly unstable and nonsignificant coef- 
ficient estimates. In contrast, the a, term was consistently stable in sign and 
significant; the coefficients of the covariate terms were also consistently sta- 
ble in magnitude and sign and were always significant. This suggested that 
the POk term be modeled as a constant, POk = Pk. The modeling of Po, as a 
constant does not imply a constant hazard rate, however; the DHR is a func- 
tion of time-dependent covariates and hence is not constant. But now all the 
parameters are independent of time. This estimated DHR model is: 

In[- ln(1 - &)I = -5.283 - 0. 154[CD4%k - 271 
- 0.294[hemoglobink - 151 + 2.020[p24,] 
+ 0.055[p24k][CD4%k - 271. (lo) 

Standard errors of the estimated parameters are shown in Table 2. 

Distribution of AIDS-Free Time After Seroconversion 

The discrete survival function of AIDS-free time, SD(k), given by (2), was 
estimated using 

k 

3D(k) = r-j (1 - b, 
r= 1 

where the 4, were evaluated by substituting in (3) the representative popu- 
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Dunlop et al. 

Table 2. Parameters Estimates for Complementary Log-Log Model 

Term f i  S E ~ )  

Constant -5.283 0.3517 
CD4% -0.154 0.0231 
Hemoglobin -0.294 0.0834 
p24 antigen 2.020 0.4783 
CD4% x p24 0.055 0.0304 

lation values at time period r of covariates CD4%, hemoglobin, and p24 
antigen. 

We now explain in more detail the above estimation procedure. The 
seropositive individuals were divided into an early AIDS group with average 
incubation times under 4 years and a late AIDS group with average incubation 
times greater than 4 years (which includes people with right-censored events) 
based on imputed seroconversion dates. This was done because different im- 
munological characteristics are associated with early and late AIDS individ- 
uals (14) and the covariate values for the two groups are quite different. The 
discrete survival function was estimated separately for each group using me- 
dian covariate values (or the mean in the case of p24 antigen, a binary vari- 
able) obtained from each complete dataset at each time period or by extrap- 
olating from a fitted trend when data were sparse (less than five observations). 
Seropositive individuals in the study group represent the prevalent and in- 
cident cohorts, but exclude the "unseen cohort" of those exposed who de- 
veloped AIDS prior to enrollment (l8,19). The contribution of this unseen 
cohort was estimated by using incident cases who developed AIDS during 
the 6 years following enrollment (obtained from additional records through 
1989) to represent "lost" cases from 1978 to the start of the study. With this 
adjustment, there were 42 early AIDS individuals and 499 late AIDS indi- 
viduals (57 AIDS and 442 right-censored cases). The early AIDS group exerts 
influence on the early part of the survival curve, while the changes in the 
survivorship of the late AIDS group influence the latter part of the survival 
curve (after 4 years). 

A grouped jackknife estimate of the weighted average of SD(k) from the 
early and late AIDS groups and its estimated standard error were obtained 
from each of the 100 complete datasets and then combined into an overall 
estimate, $,(k), and its standard error, SE[$,(~)], respectively. The resulting 
estimates with bars representing pointwise approximate 95% confidence in- 
tervals ($,(k) +- 1.96SE [sD(k)] with lower limits truncated to zero) are shown 
in Figure 4. The estimated percentages of cases remaining AIDS-free at 4, 
8, 12, and 15 years following seroconversion can be read from this distri- 
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Estimating AIDS-Free Time Distribution 

Figure 4. AIDS-free time distribution estimate and confidence intervals ( j D ( k )  ? 1.96 
~ ~ [ . % ( k ) l ) .  

bution to be 89.4%, 77.9%, 53.2%, and 34.6%, respectively. The median 
AIDS-free time obtained from this distribution is 12.5 years following se- 
roconversion. 

Discussion 

In the fitted DHR model of (3) we have identified the key laboratory variables 
that are useful for tracking the progression to AIDS of HIV-infected individ- 
uals. The changes in the DHR over time are modeled through the time-de- 
pendent covariate values of CD4%, hemoglobin, and the presence or absence 
of the p24 antigen. The positive p24 antigen coefficient indicates that its 
presence is also indicative of AIDS. The interaction of CD4% with p24 an- 
tigen modifies the effect of CD4%; the presence of p24 antigen effectively 
makes the CD4% coefficient less negative owing to its interaction with a 
binary variable. Thus the presence of p24 antigen diminishes the importance 
of CD4% values for predicting AIDS. Other studies (2,25-29) have shown 
the separate predictive relationships of CD4% (or CD4) and p24 to AIDS. 
Our present study confirms the role of those marker variables when accom- 
panied by hemoglobin; in addition, it shows that they have a joint predictive 
relationship to AIDS. What makes the present analysis striking is that these 
three marker variables were selected from a group of 73 clinical, behavioral, 
and laboratory variables. The strength of this model lies in the size of the 
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144 Dunlop et al. 

dataset analyzed and the wide variety of variables that were evaluated as 
possible predictors of AIDS. It is also notable that the model is memoryless 
in the sense that 6, depends only on the xk values, but not on earlier covariate 
values (i.e., the current value of CD4% rather than the rate of change in 
CD4% affects the probability of AIDS onset). To a large extent, this Mar- 
kovian nature is due to the elimination of the lagged covariates in the screen- 
ing process. 

Information from both the incident and prevalent cohorts was used to 
estimate the AIDS-free time distribution. It is well recognized that among 
prevalent cohorts the follow-up times associated with unknown infection times 
and undersampling of short incubation periods can lead to biased estimates 
of the incubation distribution (4,lO). The imputation of 100 seroconversion 
times for each prevalent cohort member addresses the first issue. The goal 
of multiple imputation is to provide more precise estimates of the AIDS-free 
time distribution and assess the uncertainty in the parameter estimates con- 
tributed by the imputed times. Undersampling of short incubation times can 
be addressed by estimating the contribution of the unseen cohort (18). How- 
ever, since the covariate information from the associated unseen visits was 
not known, this contribution was estimated in an ad hoe manner by using 
incident cohort cases who developed AIDS from 1984 to 1989 to represent 
the unseen cohort from 1978 to the start of the study. 

It is evident from Figure 4 that the estimated confidence intervals be- 
come wider with time; this reflects the growing variance of the estimated 
SD(k)  with increase in k as a result of an increasing number of terms in the 
product II:=,(1 - 8,). The increase in variance over time also reflects the 
uncertainty in estimates due to the smaller number of observations available 
at longer AIDS-free times. The median from this estimated distribution of 
AIDS-free time for homosexual men without treatment intervention should 
be interpreted cautiously owing to statistical uncertainty reflected by the wide 
confidence intervals of the survival function and uncertainty contributed by 
projected covariate values associated with time periods with sparse data. The 
estimated median AIDS-free time of 12.5 years obtained from this model- 
based approach is slightly longer than the 10.7 years estimated by Mufioz et 
al. (1) and the 9.5 years estimated by Taylor et al. (3), both of whom em- 
ployed Kaplan-Meier-type analyses using natural history data from the entire 
MACS . 
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